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We describe the formal algorithm and numerical applications of
a novel convex quadratic programming (QP) strategy for per-
forming the variational minimization that underlies natural reso-
nance theory (NRT). The QP algorithm vastly improves the
numerical efficiency, thoroughness, and accuracy of variational
NRT description, which now allows uniform treatment of all ref-
erence structures at the high level of detail previously reserved
only for leading “reference” structures, with little or no user
guidance. We illustrate overall QPNRT search strategy, program

I/O, and numerical results for a specific application to adenine,
and we summarize more extended results for a data set of
338 species from throughout the organic, bioorganic, and inor-
ganic domain. The improved QP-based implementation of NRT
is a principal feature of the newly released NBO 7.0 program
version. © 2019 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.25855

Introduction

Natural resonance theory (NRT)[1] is a widely used method[2] for
extracting chemically intuitive resonance-type descriptors from the
first-order reduced density matrix (1-RDM, Γ)[3] of quantum chemi-
cal theory. As originally recognized by Kekulé, Robinson, Lowry,
Ingold, and others,[4] and subsequently formulated in quantum
mechanical terms by Pauling,[5] chemical species cannot generally
be described by a single Lewis-structural bonding pattern, but
must instead be conceived as a “resonance hybrid” (chemical
superposition[6]) of alternative bonding patterns I $ II $ III $...
with associated probability weights wI, wII, wIII,... Such resonance-
type conceptions and associated curly-arrow, electron-pushing
mnemonics are now ubiquitous features of chemical pedagogy
and practice throughout the molecular sciences. While earlier appli-
cations of resonance theory were largely empirical in character,[7]

such conceptions can now be rigorously supported by variational
NRT algorithms[1] that allow chemically intuitive resonance weights
and bond-order descriptors to be derived from virtually any high-
level quantum chemical method in current usage.[8]

A mathematical outline of NRT algorithms can be sketched
as follows [employing a common notation to distinguish
operator/matrix (bold upper case), vector (bold lower case), and
set-theoretic (parentheses or bold script) quantities]. The full
quantum-chemical 1-RDM ΓQC of the system is variationally
approximated as a probability-weighted sum (ΓNRT) of contribu-
tions ΓI, ΓII, ΓIII… from individual localized resonance structures

ΓNRT =wIΓI +wIIΓII +wIIIΓIII +… ð1aÞ

with nonnegative weights {wR} that sum to unity

wI +wII +wIII +…=1,allwR ≥ 0 ð1bÞ

The weights are variationally optimized, subject to eq. (1b),
to minimize the NRT objective function Δ({wR}), which can be
described as the root-mean-square deviation of ΓNRT from
the actual quantum-chemical 1-RDM ΓQC (expressed more
precisely in Frobenius matrix norm notation in equations to
follow). Each matrix ΓQC and ΓNRT is of dimension nb (the
number of basis functions) and serves to describe the alpha
(spin-up) or beta (spin-down) electron distribution of the
quantum-chemical system, allowing for different values of
the objective function (and different resonance weightings,
etc.) for different spins of an open-shell system. Of course,
for spin-restricted treatments, the alpha and beta weights
are identical.

Quantum-chemical evaluation of any one-electron property
hP1eiQC requires only a simple convolution of operator P1e and
ΓQC, written symbolically as the integrated product of P1e(r)
with the kernel Γ(r| r0) of ΓQC over all one-electron coordinate
and spin space r,[3]
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P1eh i=
ð
P1e rð ÞΓ rjr0ð Þ½ �r0!rdr ð2Þ

The mathematical structure of the NRT ansatz (1a) then guaran-
tees that any calculable one-electron property (such as dipole
moment, kinetic energy, nuclear-electron attraction, molecular
geometry,[9] or any property that depends solely on electron
density) will optimally satisfy

P1eh iQC≈wI P1eh iI +wII P1eh iII +wIII P1eh iIII +… ð3Þ

Relationship (3) ensures optimal consistency with the funda-
mental resonance-theoretic assumption that properties of the
resonance hybrid species are expressible as the probability-
weighted average of corresponding properties for individual
resonance structures. In contrast to the Γ-based expression (2) for
evaluation of chemical properties, a Pauling-type (wavefunction-
based) formulation of the resonance Ansatz cannot satisfy the orig-
inal “averaging” concept that underlies mesomerism theory.

Because eqs. (1a) and (1b) are nonlinear, previous numerical imple-
mentation of the NRT search in the natural bond orbital (NBO) pro-
gram, NBO 6.0,[10] offered a variety of gradient-based nonlinear
minimization methods, including conjugate gradient, Broyden–
Fletcher–Goldfarb–Shanno, and simulated annealing algorithms.[11]

These methods do not exploit a key property of the formulation—
the fact that it is a convex quadratic program (QP). Convexity is a
property of optimization problems that ensures all local solutions are
global solutions, and that bounds can be found on the amount of
computational effort required to identify such a solution (to within a
prescribed tolerance). The problem is a quadratic program, because
the objective function for expansion (1a) is a quadratic function of
the variables, and the constraints (1b) are linear equalities and
inequalities. In fact, the inequality constraints in this problem define
a simplex (all variables are nonnegative and sum to unity) common
structure that can be handled efficiently by algorithms.

We describe in this paper an active-set QP approach for solving
eqs. (1a) and (1b). Other methods for convex QP could be applied
(including a primal-dual interior-point method and a gradient pro-
jection method) but the active-set approach described here is
efficient in practice and it exploits fully the properties of the prob-
lem. It is able to solve much larger problems than the general
nonlinear optimization methods implemented for legacy NRT in
NBO 6.0, and is now fully implemented in current NBO 7.0.[12]

Gram–Lagrangian minimization of the NRT
objective function

Let us suppose that nR is the number of resonance structures in
the representation of ΓNRT. The unknowns wI, wII, wIII… in eqs.
(1a) and (1b) can be gathered into a vector w 2RnR , the real
space of dimension nR. The constraints (1b) can be written as

XnR
R= 1

wR = eTw = 1,w ≥ 0 ð4Þ

where superscript “T” denotes transposition, e = (1, 1, … , 1)T,
and the notation w ≥ 0 signifies that all components of vector

w are nonnegative. The objective function to be minimized is
the matrix root-mean-square deviation

Δ wRf gð Þ= min
wRf g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓQC−ΓNRTk k2F

nb

s
ð5Þ

By the definition of the Frobenius norm, we can rewrite this
objective as

Δ wRf gð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
wTGw
nb

s
ð6Þ

where G is the Gram matrix of elements

GR,R0 = Trace ΓQC−ΓRð ÞT ΓQC−ΓR0ð Þ
� �

, forR,R0 = 1,2,…,nR ð7Þ

We now describe an active-set strategy for solving the convex
QP to minimize Δ({wR}) (or, equivalently, the quadratic function
wTGw). The technique follows Algorithm 16.3 of Ref. [13], adapted
to the particular QP encountered here, with additional details
about the linear algebra calculations required at each step.

The condition for an optimal solution point w* of the minimi-
zation problem (6) subject to the constraints (4) is that there

exists an active set W* � 1,2,…,nRf g such that

Gw* + λ*e−
X
R2W*

μ*ReR =0 ð8aÞ

eTw* = 1 ð8bÞ
w*

R =0 for allR2W* ð8cÞ
μ*R ≥ 0 for allR2W* ð8dÞ

w*
R ≥ 0 for allR2 1,2,…,nRf gnW* ð8eÞ

The Lagrange parameters λ* and μ*R (for R2W*) are real num-
bers and eR is the vector in RnR that contains all zeros except
for a 1 in position R. A more compact form of (8) is obtained by
defining the matrix EW and vector μW as follows

EW≔ eR½ �R2W ð9aÞ
μW≔ μR½ �TR2W ð9bÞ

Equations (8a)–(8e) are then written equivalently as

Gw* + λ*e−EW*μ*W* = 0 ð10aÞ

eTw* = 1 ð10bÞ
ET
W*w* =0 ð10cÞ

μ*W* ≥ 0 ð10dÞ

w* ≥ 0 ð10eÞ

The obvious approach of finding W* by trying all 2nR possi-
ble choices and selecting the one for which w*, λ*, and μ*
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satisfying (10) is computationally intractable for any nR of rea-
sonable size. The active-set method proceeds by making a

sequence of guesses of W*, changing only one component at
each iteration, working systematically, iteration by iteration,

toward the optimal value W*. At iteration k, the active-set
method also produces an estimate wk of the solution w*, where
wk satisfies the constraints (4), along with estimates μk and λk of
μ* and λ* in (10), respectively. Each iterative step involves deter-
mination of a “projected step” pk, obtained from solution of a
system of simultaneous linear eq. (11),

G e −EW k

eT 0 0
ET
W k 0 0

0
@

1
A pk

λk

μk
W k

0
@

1
A=

–Gwk

0
−EW kwk

0
@

1
A: ð11Þ

A positive multiple of pk can be added to current wk to obtain

the next estimate wk+1. An adjustment to the working set Wk

is usually made too. We outline the active-set algorithm for the
QPNRT solver in Figure 1, using set-theoretic notation.[13] The
main steps are as follows. Iteration k starts by solving eq. (11),
which is formed from the first three equality conditions in (10),

for the current values of Lagrange multipliers λk and μk
W k . If

pk = 0 and μk
W k ≥ 0, then we have found the solution: We can

set W* =W k , w* = wk, λ* = λk, and μ*
W* = μk

W k , and terminate.

Otherwise, if pk = 0 but the components of μk
W k are not all non-

negative, we choose some j 2W k for which μkj < 0, and drop

index j from the set W k in preparation for the next iteration.
Otherwise, if pk 6¼ 0, we take a step from wk in the direction pk

stopping as soon as one of the bounds wj ≥ 0 is about to be
violated, or at a step length of 1, whichever comes first. If a bound

wj ≥ 0 is encountered, we add j to the set W k in preparation for

the next iteration. Otherwise, we leave W k unchanged, setting

W k +1 =W k and proceeding to the next iteration.
We often encounter a situation in which eq. (6) has multiple

solutions, that is, there is more than one vector w* (with some

W*, λ*, and μ*) that satisfy (10). This situation, known as a type
of degeneracy, can arise when the Gram matrix (7) is positive
semidefinite (that is, it has zero eigenvalues as well as strictly pos-
itive eigenvalues). When multiple solutions exist, they are all
equally valid from an optimization viewpoint. However, from the
viewpoint of the application, we favor NRT solutions in which the
nonzero components of w* for symmetry-equivalent resonance
forms take the same value. We have found that regularizing the
Gram matrix, by replacing G by G+δI in eq. (11) (where
δ = 1.0×10−3), generates solutions of this type. Regularization
has the effect of adding a term δ||w||2 to the objective function
wTGw that steers the optimization algorithm to the element in
the solution set with minimal Euclidean norm, which is usually
the one in which the nonzero components have the same value.

Integrated strategy for resonance structure
selection and resonance weight optimization

The two principal tasks for NRT analysis are generating candi-
date resonance structures and optimizing the resonance

weights. The latter is sufficiently efficient with the QP solver
that we have been able to implement an iterative strategy for
generating and selecting resonance structures that can be
applied to systems that were essentially impossible to treat
with legacy NRT in NBO 6.0. We now describe this new strategy,
as implemented in NBO 7.0, and show its application in NRT
analysis of the adenine molecule. A schematic overview of the
overall strategy is shown in Figure 2.

NRT begins by acquiring an initial set of candidate structures
from three sources, including (1) the natural Lewis structure
(NLS) of the NBO search, (2) a search for plausible bonding pat-
terns in the natural bond index values, and (3) user-supplied
structures provided by $NRTSTR keylist input (if present). Each
candidate structure is stored in “TOPO matrix form,” that is, in
an na × na integer array, where na is the number of atoms, with
diagonal elements equal to the number of lone pairs on the
respective atoms and off-diagonal elements equal to the bond
orders for atom pairs.

The resulting set of TOPO matrices guide NBO’s CHOOSE
algorithm as it searches ΓQC for the set of bonds and lone pairs
that optimally describe the electron density ΓR of each reso-
nance structure. The atomic hybrids that comprise the bonds
and lone pairs are obtained from the eigenvectors of one- and
two-center blocks of ΓQC, rather than from frozen hybrids of a
parent resonance form as used for some structures in the origi-
nal NRT implementation. Thus, the resonance structures in our
new NRT strategy are generally better in representing the
electron density of the associated bonding pattern than the
structures of the legacy NRT approach. Note that the CHOOSE-
optimized NBOs generally differ from one ΓR bonding pattern
to another, so no assumptions are made concerning orthogo-
nality of contributing resonance structures.

The CHOOSE algorithm allows single TOPO matrices to yield
multiple resonance forms, as is the case, for example, with the
doubly-bonded resonance structures of CO2. The O C O
bonding pattern can be represented by a single TOPO matrix
but corresponds to two resonance structures, one with a πx
bond on the left and a πy on the right, and another with πy on
the left and πx on the right. CHOOSE detects alternative bond-
ing options in its search of ΓQC and generates multiple reso-
nance forms from single TOPO matrices when appropriate.

Given the set of densities {ΓR}, NRT constructs the regularized
Gram matrix of eq. (7) and proceeds to minimize the resonance
weights. Given no other information, the QP solver assigns all
resonance structures to the active set except the single struc-
ture that best represents ΓQC. That is, the solver begins with a
resonance expansion (1a) consisting of just one structure

(w0
1 = 1) with all other structures assigned to the active set (W0

of Fig. 1). The solver then proceeds to iteratively evaluate
eq. (11), following the algorithm of Figure 1, moving one struc-
ture at a time from the active set to the resonance expansion,
or vice versa, until the solution to eq. (11) satisfies eq. (10a)–(10e).
The result is the optimal resonance expansion (1a) subject to the
constraints (1b). If the QP solver has information about a prior
minimization for ΓQC, the solver instead begins with the reso-
nance expansion of the earlier minimization, adjusts the active
set accordingly, and proceeds to solve eq. (11).
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With an optimized resonance expansion in hand, NRT must
now decide whether to augment the set of candidate structures
or terminate its search. NRT identifies a set of leading reso-
nance structures in the expansion and uses each of these

structures in turn as a “parent” structure for generating addi-
tional “daughter” bonding patterns. For each parent structure,
NRT performs second-order perturbative analysis of the NBO
Fock or Kohn–Sham matrix (or a closely related approximation
involving density matrix elements for multiconfiguration
wavefunctions, as in previous NRT), seeking strong delocalizing
interactions among the valence NBOs. These interactions corre-
spond to bond rearrangements, as shown in Figure 3, and have
the potential to generate new bonding patterns that were not
previously considered by NRT. If, after considering all reference
structures, no new patterns emerge, NRT terminates, reporting
the resonance expansion, bond orders, and atomic valencies.
Otherwise, NRT cycles back to the CHOOSE step, calculating
new resonance structures and repeating QP minimization. Note
that these interleaved recursive strategies involve the succes-
sive “cycles” of resonance structure additions (each summarized
in a line of NRT output) and the QP “iterations” (with only kmax

values listed for each cycle).
Controlling the search for additional resonance forms will be

a primary concern for the NRT user. The search is directed by
two thresholds that we refer to here by their user-selectable
keywords (NRTPAR and NRTE2 of the $NBO keylist program
input). NRTPAR sets the threshold determining whether a struc-
ture in the resonance expansion will treated as a parent for

Figure 1. The active-set algorithm for solving
the convex QP (4), (6) for NRT weights.

Figure 2. Schematic overview of integrated NRT solution strategy (with
QPNRT solver for resonance weightings as middle box).
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potential daughter structures or not. By default, NRTPAR = 50%,
which sets the parent threshold to 50% of the weight for the
leading structure in the expansion. For example, if the weight
of the leading structure is 0.30, all structures in the expansion

having weights greater than 0.15 (i.e., 50% of 0.30) will be
treated as parents in the search for new daughter structures.
NRTE2 sets the threshold for judging whether delocalizing inter-
actions in a parent structure are sufficiently strong to generate
one or more new bonding patterns to be considered (by the
QP solver) for inclusion in the resonance expansion. By default,
NRTE2 = 1, meaning that all delocalizations stronger than
1 kcal/mol have the potential to generate new patterns. Note
that in contrast to the original NRT version, all NRT resonance
structures are now treated with full “reference structure” detail,
using the improved CHOOSE search that is essentially similar to
the fully optimized NLS search of default NBO analysis. Note
also that decreasing either NRTPAR or NRTE2 adds to the costly
overhead of CHOOSE optimizations for an increasing prolifera-
tion of resonance structures that are unlikely to significantly
improve the QP solution.

Figure 4 shows sample output for a relatively unconstrained
QPNRT description of adenine at the B3LYP/6–311++G** level.
The NRT output begins by reporting the NRTPAR and NRTE2
thresholds, which are the default 50% and 1 kcal/mol values,
respectively, for this calculation. NRT then acquires two initial
bonding patterns (TOPO matrices), one from the NLS of the
NBO search and one from the search of the natural binding
index connectivity pattern. NRT detects molecular point group
symmetry (from evident symmetries of the density matrix) and,
unless disabled, augments the list of candidate resonance forms
by any missing symmetry equivalent structures. For this ade-
nine calculation, the symmetry routines do not detect any miss-
ing structures, and no limit was set (using the NRTCYC = 0
keyword) on the number of iterative cycles that might be
required to complete the QPNRT search.

NRT proceeds to optimize the adenine resonance expansion
in 11 cycles, where each cycle consists of CHOOSE searches for
densities ΓR, QP minimization of weights for the current list of
candidate structures, and generation of additional bonding pat-
terns to be considered in the next cycle. For example, NRT
begins the first cycle with two TOPO matrices for which three

Figure 3. General mapping of NBO donor–acceptor types (left) onto
associated curly-arrow representation (center) and resultant charge transfer
resonance structure depiction (right) for a variety of bonding motifs.

Figure 4. Sample NRT output
showing the iterative convergence of
the resonance hybrid, objective
function value, and bond orders for
adenine.
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CHOOSE searches (the “CHOOSE” column) are performed. These
searches yield two candidate resonance structures, and QP min-
imization yields an optimal resonance hybrid consisting of two
structures from two candidates (“2/2” in the “structures” col-
umn) with an objective function value “D(w)” of 0.07648873. A
search for strong delocalizing interactions identifies 123 addi-
tional TOPO matrices (the “E2” column) to be considered in the
next cycle. In the ninth cycle, the QP solver returns a resonance
hybrid consisting of 84 resonance structures from 1288 candi-
dates, with an objective function value of 0.06745947. In the
11th cycle, no new bonding patterns are found for further con-
sideration and the NRT search self-terminates.

Resonance structures can be discarded during the NRT proce-
dure. CHOOSE searches yield optimized polar covalent bonds,
so that bond ionicity is intrinsic to the bonds that comprise the
resonance structures and there is no need to treat bond ionicity
via covalent/ionic resonance mixing. If ionic resonance forms
(differing solely from a covalent form by the complete polariza-
tion of one bond) are detected, they are discarded (the “ION”
column). For example, Figure 4 shows that 31 ionic resonance
forms were discarded in the third cycle. Bond-order conver-
gence is reported from cycle to cycle, including the maximum
change in a bond order (“dbmax”) from one cycle to the next,
and the root-mean-square change (“dbrms”) for bond orders
exceeding 1 × 10─3.

The NRT search concludes with a two-line summary report.
“D(0)” is the lowest objective function value for a resonance
hybrid consisting of only one resonance structure, equivalent to
the minimum diagonal element of the Gram matrix. Compari-
son of D(0) with the optimal objective function value D(w) mea-
sures the extent to which the NRT resonance description
improves that of a single Lewis structure. Timing information is
also reported, showing that the bulk of the calculation time is
in the CHOOSE searches and in the construction of the Gram
matrix. QP minimization is essentially free in this case. The NRT
optimization of adenine resonance hybrid, with over 18,000
CHOOSE searches and multiple QP minimizations with hun-
dreds of candidate resonance structures, requires a little over
7 min to complete on a single Xeon 2.60GHz processor.
Figure 5 shows the resulting NRT bond orders from the final
87-term resonance expansion.

The principal results of NRT analysis are the bond-order
descriptors (bAB) that are expected to exhibit useful correlations
with bond lengths,[14] bond energies,[15] bond frequencies
(Badger’s rule),[16] and other physical properties. As an example,
Figure 6 displays the bond-order-bond-length (BOBL) correla-
tion for the nine CN bonds of adenine (Fig. 4), including the
BOBL regression fit (dashed line; Pearson |χ|2 = 0.87). As shown
in the final two columns of NRT output in Fig. 4, the NRT bond
orders converge systematically toward well-defined numerical
limits (intermediate between standard single-, double-, or
triple-bond values of idealized single resonance structures),
suggesting their predictive utility even for fine details of observ-
able properties. In contrast, the NRT weightings of individual
resonance structures tend to lose any semblance of “dominant”
or “parent” character as the complexity of the resonance hybrid
increases.

NRT applications to organic, inorganic, and
biochemical species

To gain an overview of overall NRT computational performance
and set default values for algorithmic keywords affecting per-
formance, we compiled a data set of 338 chemical species of
widely varying character and degree of difficulty, chosen
(in rather random fashion) as “interesting” examples from the
organic, inorganic, and biochemical domain, with sizes ranging
up to 108 atoms and 1596 basis functions. The complete list of
species and associated NRT performance measures are pro-
vided as an Excel spreadsheet (Table S1) in Supporting Informa-
tion. Here, we summarize the results in general statistical terms,
mention some noteworthy features of individual species, and
explain how current keyword parameters for the default QPNRT
search were ultimately selected as a compromise between
exhaustive exploration of exotic resonance possibilities and
computational practicality.

The form and content of Table S1 evolved as results for varia-
tions of certain keyword control parameters became apparent,
particularly NRTCYC, NRTPAR, and NRTE2 keywords. The
NRTCYC keyword [current default: NRTCYC = 3] sets the maxi-
mum allowed number of search cycles for generating additional
possible resonance structures to be included in the QPNRT con-
vex solution (which is always allowed to run to convergence),
while NRTPAR and NRTE2 (explained above) constrain what
structures may be considered as “possible” additional structures
for consideration (requiring full CHOOSE optimization) in each
new cycle. Any relaxation of these constraints increases the
number of candidate resonance structures that must be
CHOOSE-optimized (roughly equivalent to a single run of ordi-
nary NBO analysis) and stored. Because the yield of productive
structures (i.e., those retained by the convex solver in the opti-
mized description) tends to sharply diminish in later cycles, it is
found that system computational times and memory demands
tend to become exorbitant as NRTCYC increases, with little
appreciable effect on individual bond orders or overall D(w). In
a large majority of “ordinary” chemical species, the QPNRT

Figure 5. NRT bond orders of adenine (B3LYP/6–311++G** level). [Color
figure can be viewed at wileyonlinelibrary.com]
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solution achieves full convergence within 1–3 cycles, whereas
larger or more troublesome jobs often require more than three
cycles and can overrun the maximum allowed number of reso-
nance structures (current default, NRTRES = 10,000), available
system resources for the FILE48 read-write file, and/or reason-
able time limits, particularly for ligated polynuclear metal clus-
ters or polycyclic organic species beyond the simple adenine
example considered above.

Table S1 reports results for the default limit (NRTCYC = 3) of NRT
search cycles in NBO 7.0 as currently distributed, as well as other
low NRTCYC values or the unlimited case (requested by NRTCYC = 0)
for which the search algorithm runs to self-terminating conclusion.
The first sheet summarizes a variety of “averages” for each NRTCYC
value, including (e.g., for NRTCYC = 3) the average number of
atoms (natoms = 27), basis functions (nbas = 417), contributing
resonance structures (nres = 91), and “candidate” resonance struc-
tures (ncand = 1500). These averages refer to the values listed on

sheet 3 [“NRTCYC = 3 (default)”)] with species sizes ranging up to
108 atoms, 1596 basis functions, and up to 20,000 allowed candi-
date structures. As a qualitative measure of bond-order conver-
gence, the summaries also show the average bond-order change in
the final cycle, both for the largest (dbmax = 0.09) and root-mean-
square change (dbrms = 0.04). The final three sheets display com-
parisons of species for which QPNRT results were obtained for
NRTCYC = 3 (202 species), 4 (130 species), or 5 (100 species). For
example, “W24” [(H2O)24 water cluster] results could be completed
for NRTCYC = 3 or 4, but not for NRTCYC = 5.

Figure 7 portrays some statistical features of the data set for
default (NRTCYC = 3) QPNRT search. The plotted points display
the scatter-pattern of apparent convergence (dbrms) versus
system size (nbas), with horizontal and vertical dashed/dotted
lines marking overall averages for the distributions. The overall
dbrmsav (~0.05) and dbmaxav (~0.10) values for NRTCYC = 3
are slightly higher than corresponding values when NRTCYC is
allowed to run to completion (~0.04, ~0.09, respectively), but
the restricted search appears to represent a reasonable com-
promise between exhaustiveness and practical efficiency of the
search procedure. It may seem anomalous that outlier points
of largest dbrms (> 0.1) appear at smaller nbas system size
(< 400), but such points actually represent simpler species in
which full NRT convergence was achieved, with the plotted
value merely showing the large improvement in the final cycle.

Table S1 also includes CPU times for individual jobs and an
average CPU time for the overall data set. The latter is strongly
skewed by values for the most time-consuming jobs. Larger sys-
tems naturally require greater CPU time, but for example,
brassinolide (1084 bf) completes in 0.8 h, whereas lanosterol
(1032 bf) requires 38.3 h. Similar disparities between size and
CPU time can also be seen for “average” system sizes of the
data set; for example, ibuprofen (456 bf) completes in less than
3 min but trinitrotoluene (387 bf) requires 1.5 h. In general,
such disparities reflect the importance differences in numbers
of three-center (allylic-like) “resonance sites,” rather than nbas
system size per se. Such increases in resonance complexity
trend quickly toward the extreme delocalization limit in which
no single resonance structure achieves significant “parent” sta-
tus in the final NRT expansion. This important limit in which
only NRT bond orders (but not necessarily the individual reso-
nance weightings) achieve well-converged numerical values
was essentially inaccessible in the legacy NRT implementation
of pre-NBO7 versions, but can now be treated in relatively rou-
tine manner if available system resources suffice.

For the more ordinary small-molecule (or near-NLS) cases
where resonance complexity is somewhat limited by system
size, the results of Table S1 exhibit the remarkable speedups of
the QPNRT convex solver compared with the legacy pre-NBO7
algorithm. About 58% of all species in Table S1 (196/338) com-
pleted in less than 1 CPU-minute, including many species that
would have been hopelessly impractical (even with significant
$NRTSTR user guidance) for pre-NBO7 NRT evaluation. The
vastly improved computational efficiency of the QPNRT convex
solver is also indicated by the virtually negligible percentage of
associated CPU time that is generally required for even the
most demanding applications throughout Table S1.

Figure 6. NRT BOBL correlation for CN bonds of adenine (cf. Fig. 4), showing
least-squares regression fit (dashed line, |χ|2 = 0.87).

Figure 7. Variations in dbrms (root-mean-square ΔbNRT corrections in the
last cycle of QPNRT search) with nbas (number of basis functions) for the
338 species of Table S1. Horizontal lines mark the average values for mean
(dbrmsav, dashed) and maximum (dbmaxav, dotted) last-cycle correction,
and the dashed vertical line marks average system size (nbasav) for the
data set.
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Summary and Conclusions

Broader historical aspects of NRT development and its diverse
applications are described in a recent perspective.[17] The pre-
sent work focuses on the formal algorithm of the new QPNRT
convex solver that underlies the vastly improved NRT imple-
mentation in current NBO 7.0. QPNRT also underlies the new
family of “resonance-type NBOs” (RNBOs) that were recently
introduced.[18] RNBOs provide semilocalized orbital imagery
that accurately maps onto “curly arrow” concepts of chemical
reactivity, as originally formulated by Robinson and other pio-
neer bonding theorists of the prequantal era.[4] The QPNRT
algorithm also yields improved utility of NBO7-level NRT bond
orders that were recently shown to provide incisive details of
chemical reaction mechanisms.[19]

As described above, the composite QPNRT algorithm involves
iterative cycles of two interconnected tasks: (1) the search for
additional resonance bonding patterns and associated density
matrix for each new pattern and (2) solution of the convex min-
imization problem (5) for the optimal weightings of resonance
patterns under current consideration. The convex-solver task
(2) follows a well-ordered path (Fig. 1) that is independent of
the chosen species and consumes relatively negligible CPU
time, whereas the resonance-search task (1) can grow explo-
sively for certain species, with concomitant growth of CPU
demands. Numerical results for a data set of 338 species were
used to select default values of NRT keywords that appear to
have leading leverage on overall execution time (particularly
NRTPAR, NRTE2, and NRTCYC). The current default keyword
values appear to strike a reasonable compromise for black-box
studies of systems ranging from the semilocalized near-Lewis
limit to highly delocalized metallic-like behavior. However, the
user is encouraged to explore use of $NRTSTR keylist input or
nondefault keyword values to obtain the best compromise
between lowered variational D(w) value and required CPU cost
for the species under investigation.

Supporting Information

An Excel data file (nrt_data_set.xlsx, “Table S1”) summarizing
NRT performance details for the 338 test species, and a text file
(si_test_set geometries.txt) with full geometrical coordinate
information for each species.
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